If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10v^2-13v-30=0
a = 10; b = -13; c = -30;
Δ = b2-4ac
Δ = -132-4·10·(-30)
Δ = 1369
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1369}=37$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-37}{2*10}=\frac{-24}{20} =-1+1/5 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+37}{2*10}=\frac{50}{20} =2+1/2 $
| 7x/9-5x/9=6 | | 125+15d=50 | | 8+u=3u | | x/(x+8)=0.6 | | 6(4d-7=) | | 15x-8=22+20x | | P(x)=-0.004x^2+2.4x-400 | | (x+10)(x+5)=300 | | -5x²+60x=0 | | 35a+43=180 | | 25.84=13.9+x | | V/14=e/7 | | -4.2-8.3=-3.7(x+3) | | 15x+17+4+9x=1 | | 5/j=24 | | 9/2=22j | | 3x/16=9/8 | | 5^3x=1400 | | 82+2x=10 | | 152.05=-5.8-7.7(1-5a) | | 147.14=-5.1(7-6n)-4.48n | | 6x^2+3x^2=40 | | 20+12x=80 | | 5.7(-3x+4.7)=102.03 | | -1/4p-p=25/16 | | (5x-13)+(4x)+(x)=180 | | x/3+x/3=8 | | 59/12=10/7x+8-11+4 | | x2+12x+85=0 | | 2x+6=4x–8 | | 1+4-2x+7=5x+5x | | 4x2+7=25 |